Knowledge Representation Terms Reconciled to XBRL Semantics

There are different approaches to representing knowledge. These approaches have similarities and differences¹². These approaches provide different levels of semantics and therefore provide differences in machine reasoning capabilities³. The following table compares and contrasts what is needed in the real world with what is provided by XBRL, RDF+OWL, and UML:

Real World Term (Dimensional model, set theory ⁴ ,			
computations, etc.)	XBRL	RDFS ⁵ , OWL ⁶ , SKOS ⁷	
A classification system ¹⁰ is a grouping of something based on some criteria. Definition and classification of concepts and entities (things) that exist in the real world and the relationships between them.	Taxonomy	Ontology	Package
Classification system version information		owl:versionInfo	Tagged value on package
CLASS: A set or category of things having some property in common and differentiated from other sets by kind, type, or quality. Group of real world things that go together for a specific reason. (Could be concrete or abstract)	Not defined. (Could be defined using XBRL definition relations)	owl:Class; rdfs:Class, rdf:type; Defined as: Buckets used to group things.	Class. Defined as: A collection of objects that have the same characteristics.
SUB CLASS: Ability to organize classes into a hierarchy. Specialization of classes; broader terms versus narrower terms.	general-special	rdfs:subClassOf	Specialization of classes
PROPERTY: A property is a trait, quality, feature, attribute, or peculiarity which is used to define its possessor and is therefore dependent on the possessor (entity or thing which has the property). A property belongs to something. For example, the color of a ball belongs to and is therefore is dependent on (is a property of) the ball.	Not defined. (Could be defined using XBRL definition relations)	rdf:Property, rdfs:subPropertyOf rdfs:domain,rdfs:range	Attribute
DEFINED BY: Authoritative source of information.	Reference link	rdfs:isDefinedBy; rdfs:seeAlso	Tagged value
DOCUMENTATION: Human readable definition or documentation of a concept.	Label link	rdfs:Comment	Note
SAME IDENTITY: Class "A" and class "B" are the exact same real world thing. (Example, the class Equity and the class NetAssets are exactly the same thing.)	Not defined. (Could be defined using XBRL definition relations)	sameClassAs; owl:sameAs; owl:differentFrom	NO SUPPORT
EQUIVLANCE: Class "A" and class "B" have the exact same members. (<i>Example, class</i> <i>LiabitiesAndPartnerCapital and the class</i> <i>LiabilitiesAndStockHolderEquity are both equivalent to</i> <i>LiabilitiesAndEquity.</i>)	Not defined. (Could be defined using XBRL definition relations)	equivalentTo owl:equivalentClass	NO SUPPORT

¹ Extending the UML Language for Ontology Development, <u>http://www.omg.org/ontology/documents/sosym.pdf</u> ² Knowledge Representation/Translation in RDF+OWL, N3, KIF, UML and

the WebKB-2 languages, http://www.webkb.org/doc/model/comparisons.html

³ Comparison of strong/weak semantics and relative machine reasoning capacity,

http://www.xbrlsite.com/2014/Library/ExpressivenessAndReasonaingCapacityComparison.jpg

⁴ Set theory, <u>http://en.wikipedia.org/wiki/Set_theory</u>

⁵ Difference between RDFS and OWL, <u>http://www.cambridgesemantics.com/semantic-university/rdfs-vs.-owl</u>

⁶ RDF and OWL terminology, <u>http://www.slideshare.net/rlovinger/rdf-and-owl</u>

⁷ SKOS is an RDF Schema, so basically it is the same as RDFS except it defined specific useful things, <u>http://www.w3.org/TR/2008/WD-skos-reference-20080829/skos.html</u>

⁸ Unified Modeling Language, <u>http://www.uml.org/</u>

⁹ Basic UML tutorial, <u>https://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/</u>

¹⁰ Types of classification systems, <u>http://xbrl.squarespace.com/journal/2014/3/30/understanding-classification-</u> systems.html

Real World Term (Dimensional model, set theory ⁴ ,			
computations, etc.)	XBRL	RDFS ⁵ , OWL ⁶ , SKOS ⁷	
SET DISJOINT: Things belonging to one class "A"	Not defined. (Could	owl:disjointWith	
cannot also belong to some other class "B". (Example, a	be defined using		
member of the Person class set of things can never be a	XBRL definition		
member of the Country class set of things.)	relations)		
SET COMPLIMENT: Things that are members of one	Not defined. (Could	owl:complementOf	NO SUPPORT
class "A" are all the things that do not belong to the other	be defined using		
class "B" (Example, a member of the class of	XBRL definition		
Living mings set of things is the entire set of things that do not belong to the DeadThings set of things)	relations)		
SET INVERSE: A relationship of type "Y" hotwoon "A"	Not defined (Could	owl:invorcoOf	Polationship
and "B" implies a relationship of type "Y" between "B"	he defined using	owi.inverseor	Relationship
and "A" (Example IE < starsIn> <inverseof>< hasStar>:</inverseof>	XBRI definition		
AND IF <meninblack><hasstar><willsmith>: THEN</willsmith></hasstar></meninblack>	relations)		
<willsmith><starsin><meninblack>)</meninblack></starsin></willsmith>			
SET UNION: The members of set "C" include all the	Not defined. (Could	owl:unionOf	NO SUPPORT
members of set "A" and all the members of set "B".	be defined using		
	XBRL definition		
	relations)		
SET INTERSECTION: The members of set "C" include	Not defined. (Could	owl:intersectionOf	NO SUPPORT
all the members of set "A" that are also members of set	be defined using		
"В".	XBRL definition		
11	relations)		
SET MEMBERSHIP: Number of members of a set	<u>?????????????????????????????????????</u>	Cardinality	Multiplicity
A relationship between "A" and "B" is also true between	Not defined. (Could	owl:SymmetricProperty	NO SUPPORT
"B" and "A".	be defined using		
	XBRL (Jellinilion)		
A relationship between "A" and "B" and between "B" and	Not defined (Could	owl:TransitiveProperty	
"C" is also true between "A" and "C"	be defined using	owi. Hansiliver toperty	
	XBRI definition		
	relations)		
Characteristic of property inheritance	Not defined	Defined	Defined
		samePropertyAs	NO SUPPORT
Data types or data type property (includes restrictions on	XML Schema	XML Schema	No standard data
data types allowed by XML Schema, facets)	Datatypes ¹² , XBRL	Datatypes	types it seems
	Data type registry ¹³		
Unique identifier	Name or ID?	Label	Name
Units	Units, XBRL Units Registry ¹⁴	NO SUPPORT	NO SUPPORT
DIMENSIONAL MODEL: A characteristic describes a	Aspects ¹⁵ (XBRL	NO SUPPORT	NO SUPPORT
fact (a characteristic is a property of a fact). A	dimensions, tuples)		
characteristic or distinguishing aspect provides			
information necessary to describe a fact or distinguish			
one fact from another fact. A fact may have one or many			
DIMENCIONAL MODEL: A fact is reported. A fact	Circula fasta (VDDI		
defines a single observable, reportable piece of	simple facts (XBRL	NO SUPPORT	NO SUPPORT
information contained within a financial report or fact	(tuples)		
value contextualized for unambiguous interpretation or	(tuples)		
analysis by one or more distinguishing characteristics			
(properties of the fact). A fact value is one property of a			
fact. Every fact has exactly one fact value.			
DIMENSIONAL MODEL: A hypercube is used to	Hypercube, Network	Government Linked	NO SUPPORT
combine facts which go together for some specific		Data, Data Cube	
reason. (AKA cube, matrix, table, lattice, array)		Vocabulary ¹⁶	

 ¹¹ Cardinality, <u>http://en.wikipedia.org/wiki/Cardinality</u>
¹² XML Schema Data Types, <u>http://www.w3.org/TR/xmlschema11-2/</u>

 ¹³ XBRL International Data Type Registry, <u>http://www.xbrl.org/dtr/dtr.xml</u>
¹⁴ XBRL International Units Registry, <u>http://www.xbrl.org/utr/utr.xml</u>

¹⁵ XBRL International Abstract Model 2.0, <u>http://www.xbrl.org/specification/abstractmodel-primary/pwd-2012-06-</u> 06/abstractmodel-primary-pwd-2012-06-06.html ¹⁶ Data Cube Vocabulary, http://www.w3.org/2011/gld/wiki/Data Cube Vocabulary

Real World Term (Dimensional model, set theory ⁴ ,			
computations, etc.)	XBRL	RDFS ⁵ , OWL ⁶ , SKOS ⁷	
COMPUTATIONS: A roll up computes a total from a set	XBRL calculation	NO SUPPORT	Yes
of concepts (stock or flow). This equation is: $A + B + n =$	relations		
Total.			
COMPUTATIONS: A roll forward reconciles a balance	XBRL Formula	NO SUPPORT	NO SUPPORT
(stock) between two points in time (flow). This equation			
is: beginning balance + changes = ending balance.			
COMPUTATIONS: An adjustment reconciles an	XBRL Formula	NO SUPPORT	NO SUPPORT
originally stated balance to a restated balance between			
two different report dates. This equation is: originally			
reported balance + adjustment = restated balance.			
COMPUTATIONS: A member aggregation is a	XBRL Formula	NO SUPPORT	Yes
collection-member type whole-part relation. This			
equation is: Sum(concept).	VDDI anagantation		Vee
Hierarchy of relations	ABRL presentation	res	res
Conorol relations	VPDL definition	Polotiona	Polotiono
General relations	relations XBRI Link	Relations	Relations
	Role Registry (I RR) ¹⁷		
Business rules	XBRI Formula	Rule Interchange	NO SUPPORT
	XBRET Officia	Format (RIF)	
WHOLE-PART RELATIONS: A meronym denotes a	XBRL definition	Relations in general,	Relations in
constituent part of, or a member of something. (Whole-	relations, XBRL Link	but not specific	general, but not
Part type relations ¹⁸)	Role Registry (LRR)	relations types	specific relations
			types
WHOLE-PART RELATIONS: HasPart (same as integral			
object-component)			
WHOLE-PART RELATIONS: IsPartOf (component-			
integral object)			
WHOLE-PART RELATIONS: member-collection;			
collection-member	113		
Open World Assumption and Closed World Assumption	Unspecified'	OPEN or CLOSED	CLOSED
Simple and generic descriptions of electronic resources,	NO SUPPORT	Supports use of Dublin	NO SUPPORT
Dublin Core ²⁰		Core metadata	
Notion of "abstract"	YES	NO	Unknown

Why do go through all of the trouble of doing this? Machine readable information. The more a machine can understand, the more a machine can do for humans. These capabilities allow systems to express and make sense of first order logic²¹.

All men are mortal.

Socrates is a man.

Therefore, Socrates is mortal.

There are two key parts of first-order logic. The syntax determines which collections of symbols are legal expressions in first-order logic, while the semantics determine the meanings behind these expressions. While no first-order theory has the strength to describe fully and categorically structures with an infinite domain; they can describe fully structures within a finite domain.

¹⁷ XBRL International Link Role Registry, <u>http://specifications.xbrl.org/registries/lrr-2.0/</u>

¹⁸ A Taxonomy of Part-Whole Relations, <u>http://csjarchive.cogsci.rpi.edu/1987v11/i04/p0417p0444/MAIN.PDF</u>

¹⁹ CWA (closed world assumption) previously existed in XBRL but was removed.

²⁰ Dublin Core, <u>http://wiki.dublincore.org/index.php/User_Guide</u>

²¹ First Order Logic, <u>http://en.wikipedia.org/wiki/First-order_logic</u>